让天下没有难找的讲师,职业讲师,商业讲师,培训师,讲师库-北京昭智教育

傅一航:大数据挖掘工具: SPSS Statistics入门与提高

[复制链接]
大数据挖掘工具: SPSS Statistics入门与提高
【课程目标】
随着大数据分析的需求越来越旺盛,大数据分析工具也越来越琳琅满目,然而,绝大多数的分析工具都只具有单一用途,无法满足企业的复杂的多样化的全面的业务分析需求,因此分析工具的选择成为了一个挑战。
一个良好的分析工具必须满足如下要求:
1)             易学易用易操作。
2)             分析效率要高。
3)             满足业务分析需求。
如果要说前两个要求,显然类似于Excel/PowerBI/Tableau等工具都是满足要求的,但此类工具却无法解决更复杂的业务问题,比如影响因素分析、客户行为预测/精准营销、客户群划分、产品交叉销售、产品销量预测等等,这些需求用Excel/PBI等工具就难以胜任了,需要用到更高级的数据挖掘工具,比如IBMSPSS工具。IBM SPSS工具是面向非专业人士的高级的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能够解决的业务问题更丰富,提供了更加强大的业务数据分析功能,并且它封装了具体的分析算法,即使你没有深厚的技能能力,也能够胜任复杂的数据分析和挖掘。
本课程面向数据分析部等专门负责数据分析与挖掘的人士,专注大数据挖掘工具SPSSStatistics的培训。
                              
本课程从实际的业务需求出发,对数据分析及数据挖掘技术进行了全面的介绍,将数据挖掘标准流程、分析思路、分析方法、分析模型,全部落地在SPSS工具中,通过大量的工具操作和演练,帮助学员熟练掌握SPSS工具的使用,并能够将SPSS工具在实际的业务数据分析中满地,实现“知行合一”。
通过本课程的学习,达到如下目的:
1、  了解大数据挖掘的标准过程和挖掘步骤。
2、  掌握基本的统计分析,常用的影响因素分析。
3、  理解数据挖掘的常见模型,原理及适用场景。
4、  熟练掌握SPSS基本操作,能利用SPSS解决实际的商业问题。
【授课时间】
2~4天时间,或根据客户需求选择(每天6个小时)
  
知识点
  
2天
4天
数据挖掘标准流程
数据流预处理
数据可视化
影响因素分析
数值预测模型
√回归时序
季节模型
回归模型优化
分类预测模型
√仅决策树
ANN/SVM/…
市场客户划分
客户价值评估
假设检验
实战
【授课对象】
市场部、业务支撑部、数据分析部、运营分析部等对业务数据分析有较高要求的相关人员。
【学员要求】
1、    每个学员自备一台便携机(必须)。
2、    便携机中事先安装好MicrosoftOffice Excel 2013版本及以上。
3、    便携机中事先安装好SPSSStatistics v24版本及以上。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
基础知识精讲 + 案例演练 + 实际业务问题分析 + 工具实际操作
本课程突出数据挖掘的实际应用,结合行业的典型应用特点,从实际问题入手,引出相关知识,进行大数据的收集与处理;引导学员思考,构建分析模型,进行数据分析与挖掘,以及数据呈现与解读,全过程演练操作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。
【课程大纲】
第一部分:  数据挖掘标准流程
1、        数据挖掘概述
2、        数据挖掘的标准流程(CRISP-DM)
Ø  商业理解
Ø  数据准备
Ø  数据理解
Ø  模型建立
Ø  模型评估
Ø  模型应用
案例:客户流失预测及客户挽留
3、        数据集的基本知识
a)       存储类型
b)       统计类型
c)       角度
4、SPSS工具简介
第二部分:  数据预处理过程
1、数据预处理的基本步骤
Ø  数据读取、数据理解、数据处理、变量处理、探索分析
2、数据预处理的主要任务
Ø  数据集成:多个数据集的合并
Ø  数据清理:异常值的处理
Ø  数据处理:数据筛选、数据精简、数据平衡
Ø  变量处理:变量变换、变量派生、变量精简
Ø  数据归约:实现降维,避免维灾难
3、数据集成
Ø  外部数据读入:Txt/Excel/SPSS/Database
Ø  数据追加(添加数据)
Ø  变量合并(添加变量)
4、数据理解(异常数据处理)
Ø  取值范围限定
Ø  重复值处理
Ø  无效值/错误值处理
Ø  缺失值处理
Ø  离群值/极端值处理
Ø  数据质量评估
5、数据准备:数据处理
Ø  数据筛选:数据抽样/选择(减少样本数量)
Ø  数据精简:数据分段/离散化(减少变量的取值个数)
Ø  数据平衡:正反样本比例均衡
6、数据准备:变量处理
Ø  变量变换:原变量取值更新,比如标准化
Ø  变量派生:根据旧变量生成新的变量
Ø  变量精简:降维,减少变量个数
7、数据降维
Ø  常用降维方法
Ø  如何确定变量个数
Ø  特征选择:选择重要变量,剔除不重要的变量
²  从变量本身考虑
²  从输入变量与目标变量的相关性考虑
²  对输入变量进行合并
Ø  因子分析(主成分分析)
²  因子分析的原理
²  因子个数如何选择
²  如何解读因子含义
案例:提取影响电信客户流失的主成分分析
8、数据探索性分析
Ø  常用统计指标分析
Ø  单变量:数值变量/分类变量
Ø  双变量:交叉分析/相关性分析
Ø  多变量:特征选择、因子分析
演练:描述性分析(频数、描述、探索、分类汇总)
第三部分:  数据可视化篇
1、数据可视化的原则
2、常用可视化工具
3、常用可视化图形
Ø  柱状图、条形图、饼图、折线图、箱图、散点图等
4、图形的表达及适用场景
演练:各种图形绘制
第四部分:  影响因素分析篇
问题:如何判断一个因素对另一个因素有影响?比如营销费用是否会影响销售额?产品价格是否会影响销量?产品的陈列位置是否会影响销量?
风险控制的关键因素有哪些?如何判断?
1、 影响因素分析的常见方法
2、 相关分析(衡量变量间的的相关性)
问题:这两个属性是否会相互影响?影响程度大吗?营销费用会影响销售额吗?
Ø  什么是相关关系
Ø  相关系数:衡量相关程度的指标
Ø  相关系数的三个计算公式
Ø  相关分析的假设检验
Ø  相关分析的基本步骤
Ø  相关分析应用场景
演练:体重与腰围的关系
演练:营销费用会影响销售额吗
演练:哪些因素与汽车销量有相关性
演练:通信费用与开通月数的相关分析
案例:酒楼生意好坏与报纸销量的相关分析
Ø  偏相关分析
Ø  距离相关分析
3、 方差分析
问题:哪些才是影响销量的关键因素?
Ø  方差分析解决什么问题
Ø  方差分析种类:单因素/双因素可重复/双因素无重复
Ø  方差分析的应用场景
Ø  方差分析的原理与步骤
Ø  如何解决方差分析结果
演练:终端摆放位置与终端销量有关吗?
演练:开通月数驿客户流失的影响分析
演练:客户学历对消费水平的影响分析
演练:广告和价格是影响终端销量的关键因素吗
演练:营业员的性别、技能级别产品销量有影响吗?
案例:2015年大学生工资与父母职业的关系
案例:医生洗手与婴儿存活率的关系
演练:寻找影响产品销量的关键因素
Ø  多因素方差分析原理
Ø  多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析(多因素)
Ø  协方差分析原理
演练:饲料对生猪体重的影响分析(协方差分析)
4、 列联分析(两类别变量的相关性分析)
Ø  交叉表与列联表
Ø  卡方检验的原理
Ø  卡方检验的几个计算公式
Ø  列联表分析的适用场景
案例:套餐类型对客户流失的影响分析
案例:学历对业务套餐偏好的影响分析
案例:行业/规模对风控的影响分析
第五部分: 数据建模过程篇
1、 预测建模六步法
Ø  选择模型:基于业务选择恰当的数据模型
Ø  属性筛选:选择对目标变量有显著影响的属性来建模
Ø  训练模型:采用合适的算法对模型进行训练,寻找到最合适的模型参数
Ø  评估模型:进行评估模型的质量,判断模型是否可用
Ø  优化模型:如果评估结果不理想,则需要对模型进行优化
Ø  应用模型:如果评估结果满足要求,则可应用模型于业务场景
2、 数据挖掘常用的模型
Ø  数值预测模型:回归预测、时序预测等
Ø  分类预测模型:逻辑回归、决策树、神经网络、支持向量机等
Ø  市场细分:聚类、RFM、PCA等
Ø  产品推荐:关联分析、协同过滤等
Ø  产品优化:回归、随机效用等
Ø  产品定价:定价策略/最优定价等
3、 属性筛选/特征选择/变量降维
Ø  基于变量本身特征
Ø  基于相关性判断
Ø  因子合并(PCA等)
Ø  IV值筛选(评分卡使用)
Ø  基于信息增益判断(决策树使用)
4、 模型评估
Ø  模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
Ø  预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
Ø  模型评估方法:留出法、K拆交叉验证、自助法等
Ø  其它评估:过拟合评估
5、 模型优化
Ø  优化模型:选择新模型/修改模型
Ø  优化数据:新增显著自变量
Ø  优化公式:采用新的计算公式
6、 模型实现算法(暂略)
7、 好模型是优化出来的
案例:通信客户流失分析及预警模型
第六部分:  数值预测模型篇
问题:如何预测产品的销量/销售金额?如果产品跟随季节性变动,该如何预测?新产品上市,如果评估销量上限及销售增速?
1、 销量预测与市场预测——让你看得更远
2、 回归预测/回归分析
问题:如何预测未来的销售量(定量分析)?
Ø  回归分析的基本原理和应用场景
Ø  回归分析的种类(一元/多元、线性/曲线)
Ø  得到回归方程的几种常用方法
Ø  回归分析的五个步骤与结果解读
Ø  回归预测结果评估(如何评估预测质量,如何选择最佳回归模型)
演练:散点图找推广费用与销售额的关系(一元线性回归)
演练:推广费用、办公费用与销售额的关系(多元线性回归)
演练:让你的营销费用预算更准确
演练:如何选择最佳的回归预测模型(曲线回归)
Ø  带分类变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源配置(营业厅)
3、 时序预测
问题:随着时间变化,未来的销量变化趋势如何?
Ø  时序分析的应用场景(基于时间的变化规律)
Ø  移动平均MA的预测原理
Ø  指数平滑ES的预测原理
Ø  自回归移动平均ARIMA模型
Ø  如何评估预测值的准确性?
案例:销售额的时序预测及评估
演练:汽车销量预测及评估
演练:电视机销量预测分析
演练:上海证券交易所综合指数收益率序列分析
演练:服装销售数据季节性趋势预测分析
4、 季节性预测模型
Ø  季节性回归模型的参数
Ø  常用季节性预测模型(相加、相乘)
案例:美国航空旅客里程的季节性趋势分析
案例:产品销售季节性趋势预测分析
5、 新产品预测模型与S曲线
Ø  如何评估销量增长的拐点
Ø  珀尔曲线与龚铂兹曲线
案例:如何预测产品的销售增长拐点,以及销量上限
演戏:预测IPad产品的销量
6、 自定义模型(如何利用规划求解进行自定义模型)
案例:如何对餐厅客流量进行建模及模型优化
第七部分:  回归模型优化篇
1、 回归模型的基本原理
Ø  三个基本概念:总变差、回归变差、剩余变差
Ø  方程的显著性检验:是否可以做回归分析?
Ø  拟合优度检验:回归模型的质量评估?
Ø  因素的显著性检验:自变量是否可用?
Ø  理解标准误差的含义:预测的准确性?
2、 模型优化思路:寻找最佳回归拟合线
Ø  如何处理异常数据(残差与异常值排除)
Ø  如何剔除非显著因素(因素显著性检验)
Ø  如何进行非线性关系检验
Ø  如何进行相互作用检验
Ø  如何进行多重共线性检验
Ø  如何检验误差项
Ø  如何判断模型过拟合
案例:模型优化案例
第八部分:  分类预测模型篇
问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务?
1、 分类模型概述
2、 常见分类预测模型
3、 评估分类模型的常用指标
Ø  正确率、查全率/查准率、特异性等
4、 逻辑回归模型(LR)
Ø  逻辑回归模型原理及适用场景
Ø  逻辑回归种类:二项/多项逻辑回归
Ø  如何解读逻辑回归方程
案例:如何评估用户是否会购买某产品(二项逻辑回归)
Ø  消费者品牌选择模型分析
案例:多品牌选择模型分析(多项逻辑回归)
5、 分类决策树(DT)
问题:如何预测客户行为?如何识别潜在客户?
风控:如何识别欠贷者的特征,以及预测欠贷概率?
客户保有:如何识别流失客户特征,以及预测客户流失概率?
Ø  决策树分类简介
Ø  如何评估分类性能?
案例:美国零售商(Target)如何预测少女怀孕
演练:识别银行欠货风险,提取欠贷者的特征
Ø  构建决策树的三个关键问题
²  如何选择最佳属性来构建节点
²  如何分裂变量
²  修剪决策树
Ø  选择最优属性
²  熵、基尼索引、分类错误
²  属性划分增益
Ø  如何分裂变量
²  多元划分与二元划分
²  连续变量离散化(最优划分点)
Ø  修剪决策树
²  剪枝原则
²  预剪枝与后剪枝
Ø  构建决策树的四个算法
²  C5.0、CHAID、CART、QUEST
²  各种算法的比较
Ø  如何选择最优分类模型?
案例:商场酸奶购买用户特征提取
案例:电信运营商客户流失预警与客户挽留
案例:识别拖欠银行货款者的特征,避免不良货款
案例:识别电信诈骗者嘴脸,让通信更安全
6、 人工神经网络(ANN)
Ø  神经网络概述
Ø  神经网络基本原理
Ø  神经网络的结构
Ø  神经网络的建立步骤
Ø  神经网络的关键问题
Ø  BP反向传播网络(MLP)
Ø  径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
7、 判别分析(DA)
Ø  判别分析原理
Ø  距离判别法
Ø  典型判别法
Ø  贝叶斯判别法
案例:MBA学生录取判别分析
案例:上市公司类别评估
8、 K近邻分类(KNN)
Ø  基本原理
Ø  关键问题
9、贝叶斯分类(NBN)
Ø  贝叶斯分类原理
Ø  计算类别属性的条件概率
Ø  估计连续属性的条件概率
Ø  贝叶斯网络种类:TAN/马尔科夫毯
Ø  预测分类概率(计算概率)
案例:评估银行用户拖欠货款的概率
10、    支持向量机(SVM)
Ø  SVM基本原理
Ø  线性可分问题:最大边界超平面
Ø  线性不可分问题:特征空间的转换
Ø  维空难与核函数
第九部分:  市场细分模型篇
问题:我们的客户有几类?各类特征是什么?如何实现客户细分,开发符合细分市场的新产品?如何提取客户特征,从而对产品进行市场定位?
1、 市场细分的常用方法
Ø  有指导细分
Ø  无指导细分
2、 聚类分析
Ø  如何更好的了解客户群体和市场细分?
Ø  如何识别客户群体特征?
Ø  如何确定客户要分成多少适当的类别?
Ø  聚类方法原理介绍
Ø  聚类方法作用及其适用场景
Ø  聚类分析的种类
Ø  K均值聚类(快速聚类)
案例:移动三大品牌细分市场合适吗?
演练:宝洁公司如何选择新产品试销区域?
演练:如何评选优秀员工?
演练:中国各省份发达程度分析,让数据自动聚类
Ø  层次聚类(系统聚类):发现多个类别
Ø  R型聚类与Q型聚类的区别
案例:中移动如何实现客户细分及营销策略
演练:中国省市经济发展情况分析(Q型聚类)
演练:裁判评分的标准衡量,避免“黑哨”(R型聚类)
Ø  两步聚类
3、 主成分分析PCA分析
Ø  主成分分析原理
Ø  主成分分析基本步骤
Ø  主成分分析结果解读
演练:PCA探索汽车购买者的细分市场
4、 RFM模型客户细分框架
第十部分:  客户价值评估
1、 客户价值评估与RFM模型
问题:如何评估客户的价值?如何针对不同客户采取不同的营销策略?
Ø  RFM模型,更深入了解你的客户价值
Ø  RFM的客户细分框架理解
Ø  RFM模型与市场策略
Ø  RFM模型与活跃度
演练:“双11”淘宝商家如何选择客户进行促销
演练:结合响应模型,宜家IKE实现最大化营销利润
演练:重购用户特征分析
第十一部分:       假设检验篇
1、 参数检验分析(样本均值检验)
问题:如何验证营销效果的有效性?
Ø  假设检验概述
²  单样本T检验
²  两独立样本T检验
²  两配对样本T检验
Ø  假设检验适用场景
电信行业
案例:电信运营商ARPU值评估分析(单样本)
案例:营销活动前后分析(两配对样本)
金融行业
案例:信用卡消费金额评估分析(单样本)
医疗行业
案例:吸烟与胆固醇升高的分析(两独立样本)
案例:减肥效果评估(两配对样本)
2、非参数检验分析(样本分布检验)
问题:这些属性数据的分布情况如何?如何从数据分布中看出问题?
Ø  非参数检验概述
²  单样本检验
²  两独立样本检验
²  两相关样本检验
²  两配对样本检验
Ø  非参数检验适用场景
案例:产品合格率检验(单样本-二项分布)
案例:训练新方法有效性检验(两配对样本-符号/秩检验)
案例:促销方式效果检验(多相关样本-Friedman检验)
案例:客户满意度差异检验(多相关样本-Cochran Q检验)
第十二部分:       实战-数据挖掘项目
实战1:客户流失预警与客户挽留之真实数据分析实践
实战2:银行信用风险分析
结束:课程总结与问题答疑。

使用道具

管理技能讲师|企业战略讲师|网络媒体讲师|营销服务讲师|职场技能讲师|人力资源讲师|党政爱国讲师|财税金融讲师|生产管理讲师|其他类讲师|内训课程|讲师列表|手机版|

讲师库 | 讲师列表 | 账号登录 | 立即注册 | 网站地图 | 京公网安备11010702002698 | 京ICP备2024062795号-1

返回顶部 返回列表