大数据挖掘工具: SPSS Statistics入门与提高 【课程目标】 随着大数据分析的需求越来越旺盛,大数据分析工具也越来越琳琅满目,然而,绝大多数的分析工具都只具有单一用途,无法满足企业的复杂的多样化的全面的业务分析需求,因此分析工具的选择成为了一个挑战。 一个良好的分析工具必须满足如下要求: 1) 易学易用易操作。 2) 分析效率要高。 3) 满足业务分析需求。 如果要说前两个要求,显然类似于Excel/PowerBI/Tableau等工具都是满足要求的,但此类工具却无法解决更复杂的业务问题,比如影响因素分析、客户行为预测/精准营销、客户群划分、产品交叉销售、产品销量预测等等,这些需求用Excel/PBI等工具就难以胜任了,需要用到更高级的数据挖掘工具,比如IBMSPSS工具。IBM SPSS工具是面向非专业人士的高级的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能够解决的业务问题更丰富,提供了更加强大的业务数据分析功能,并且它封装了具体的分析算法,即使你没有深厚的技能能力,也能够胜任复杂的数据分析和挖掘。 本课程面向数据分析部等专门负责数据分析与挖掘的人士,专注大数据挖掘工具SPSSStatistics的培训。 本课程从实际的业务需求出发,对数据分析及数据挖掘技术进行了全面的介绍,将数据挖掘标准流程、分析思路、分析方法、分析模型,全部落地在SPSS工具中,通过大量的工具操作和演练,帮助学员熟练掌握SPSS工具的使用,并能够将SPSS工具在实际的业务数据分析中满地,实现“知行合一”。 通过本课程的学习,达到如下目的: 1、 了解大数据挖掘的标准过程和挖掘步骤。 2、 掌握基本的统计分析,常用的影响因素分析。 3、 理解数据挖掘的常见模型,原理及适用场景。 4、 熟练掌握SPSS基本操作,能利用SPSS解决实际的商业问题。 【授课时间】 2~4天时间,或根据客户需求选择(每天6个小时) 【授课对象】 市场部、业务支撑部、数据分析部、运营分析部等对业务数据分析有较高要求的相关人员。 【学员要求】 1、 每个学员自备一台便携机(必须)。 2、 便携机中事先安装好MicrosoftOffice Excel 2013版本及以上。 3、 便携机中事先安装好SPSSStatistics v24版本及以上。 注:讲师可以提供试用版本软件及分析数据源。 【授课方式】 基础知识精讲 + 案例演练 + 实际业务问题分析 + 工具实际操作 本课程突出数据挖掘的实际应用,结合行业的典型应用特点,从实际问题入手,引出相关知识,进行大数据的收集与处理;引导学员思考,构建分析模型,进行数据分析与挖掘,以及数据呈现与解读,全过程演练操作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。 【课程大纲】 第一部分: 数据挖掘标准流程1、 数据挖掘概述 2、 数据挖掘的标准流程(CRISP-DM) Ø 商业理解 Ø 数据准备 Ø 数据理解 Ø 模型建立 Ø 模型评估 Ø 模型应用 案例:客户流失预测及客户挽留 3、 数据集的基本知识 a) 存储类型 b) 统计类型 c) 角度 4、SPSS工具简介 第二部分: 数据预处理过程1、数据预处理的基本步骤 Ø 数据读取、数据理解、数据处理、变量处理、探索分析 2、数据预处理的主要任务 Ø 数据集成:多个数据集的合并 Ø 数据清理:异常值的处理 Ø 数据处理:数据筛选、数据精简、数据平衡 Ø 变量处理:变量变换、变量派生、变量精简 Ø 数据归约:实现降维,避免维灾难 3、数据集成 Ø 外部数据读入:Txt/Excel/SPSS/Database Ø 数据追加(添加数据) Ø 变量合并(添加变量) 4、数据理解(异常数据处理) Ø 取值范围限定 Ø 重复值处理 Ø 无效值/错误值处理 Ø 缺失值处理 Ø 离群值/极端值处理 Ø 数据质量评估 5、数据准备:数据处理 Ø 数据筛选:数据抽样/选择(减少样本数量) Ø 数据精简:数据分段/离散化(减少变量的取值个数) Ø 数据平衡:正反样本比例均衡 6、数据准备:变量处理 Ø 变量变换:原变量取值更新,比如标准化 Ø 变量派生:根据旧变量生成新的变量 Ø 变量精简:降维,减少变量个数 7、数据降维 Ø 常用降维方法 Ø 如何确定变量个数 Ø 特征选择:选择重要变量,剔除不重要的变量 ² 从变量本身考虑 ² 从输入变量与目标变量的相关性考虑 ² 对输入变量进行合并 Ø 因子分析(主成分分析) ² 因子分析的原理 ² 因子个数如何选择 ² 如何解读因子含义 案例:提取影响电信客户流失的主成分分析 8、数据探索性分析 Ø 常用统计指标分析 Ø 单变量:数值变量/分类变量 Ø 双变量:交叉分析/相关性分析 Ø 多变量:特征选择、因子分析 演练:描述性分析(频数、描述、探索、分类汇总) 第三部分: 数据可视化篇1、数据可视化的原则 2、常用可视化工具 3、常用可视化图形 Ø 柱状图、条形图、饼图、折线图、箱图、散点图等 4、图形的表达及适用场景 演练:各种图形绘制 第四部分: 影响因素分析篇问题:如何判断一个因素对另一个因素有影响?比如营销费用是否会影响销售额?产品价格是否会影响销量?产品的陈列位置是否会影响销量? 风险控制的关键因素有哪些?如何判断? 1、 影响因素分析的常见方法 2、 相关分析(衡量变量间的的相关性) 问题:这两个属性是否会相互影响?影响程度大吗?营销费用会影响销售额吗? Ø 什么是相关关系 Ø 相关系数:衡量相关程度的指标 Ø 相关系数的三个计算公式 Ø 相关分析的假设检验 Ø 相关分析的基本步骤 Ø 相关分析应用场景 演练:体重与腰围的关系 演练:营销费用会影响销售额吗 演练:哪些因素与汽车销量有相关性 演练:通信费用与开通月数的相关分析 案例:酒楼生意好坏与报纸销量的相关分析 Ø 偏相关分析 Ø 距离相关分析 3、 方差分析 问题:哪些才是影响销量的关键因素? Ø 方差分析解决什么问题 Ø 方差分析种类:单因素/双因素可重复/双因素无重复 Ø 方差分析的应用场景 Ø 方差分析的原理与步骤 Ø 如何解决方差分析结果 演练:终端摆放位置与终端销量有关吗? 演练:开通月数驿客户流失的影响分析 演练:客户学历对消费水平的影响分析 演练:广告和价格是影响终端销量的关键因素吗 演练:营业员的性别、技能级别产品销量有影响吗? 案例:2015年大学生工资与父母职业的关系 案例:医生洗手与婴儿存活率的关系 演练:寻找影响产品销量的关键因素 Ø 多因素方差分析原理 Ø 多因素方差结果的解读 演练:广告形式、地区对销量的影响因素分析(多因素) Ø 协方差分析原理 演练:饲料对生猪体重的影响分析(协方差分析) 4、 列联分析(两类别变量的相关性分析) Ø 交叉表与列联表 Ø 卡方检验的原理 Ø 卡方检验的几个计算公式 Ø 列联表分析的适用场景 案例:套餐类型对客户流失的影响分析 案例:学历对业务套餐偏好的影响分析 案例:行业/规模对风控的影响分析 第五部分: 数据建模过程篇1、 预测建模六步法 Ø 选择模型:基于业务选择恰当的数据模型 Ø 属性筛选:选择对目标变量有显著影响的属性来建模 Ø 训练模型:采用合适的算法对模型进行训练,寻找到最合适的模型参数 Ø 评估模型:进行评估模型的质量,判断模型是否可用 Ø 优化模型:如果评估结果不理想,则需要对模型进行优化 Ø 应用模型:如果评估结果满足要求,则可应用模型于业务场景 2、 数据挖掘常用的模型 Ø 数值预测模型:回归预测、时序预测等 Ø 分类预测模型:逻辑回归、决策树、神经网络、支持向量机等 Ø 市场细分:聚类、RFM、PCA等 Ø 产品推荐:关联分析、协同过滤等 Ø 产品优化:回归、随机效用等 Ø 产品定价:定价策略/最优定价等 3、 属性筛选/特征选择/变量降维 Ø 基于变量本身特征 Ø 基于相关性判断 Ø 因子合并(PCA等) Ø IV值筛选(评分卡使用) Ø 基于信息增益判断(决策树使用) 4、 模型评估 Ø 模型质量评估指标:R^2、正确率/查全率/查准率/特异性等 Ø 预测值评估指标:MAD、MSE/RMSE、MAPE、概率等 Ø 模型评估方法:留出法、K拆交叉验证、自助法等 Ø 其它评估:过拟合评估 5、 模型优化 Ø 优化模型:选择新模型/修改模型 Ø 优化数据:新增显著自变量 Ø 优化公式:采用新的计算公式 6、 模型实现算法(暂略) 7、 好模型是优化出来的 案例:通信客户流失分析及预警模型 第六部分: 数值预测模型篇问题:如何预测产品的销量/销售金额?如果产品跟随季节性变动,该如何预测?新产品上市,如果评估销量上限及销售增速? 1、 销量预测与市场预测——让你看得更远 2、 回归预测/回归分析 问题:如何预测未来的销售量(定量分析)? Ø 回归分析的基本原理和应用场景 Ø 回归分析的种类(一元/多元、线性/曲线) Ø 得到回归方程的几种常用方法 Ø 回归分析的五个步骤与结果解读 Ø 回归预测结果评估(如何评估预测质量,如何选择最佳回归模型) 演练:散点图找推广费用与销售额的关系(一元线性回归) 演练:推广费用、办公费用与销售额的关系(多元线性回归) 演练:让你的营销费用预算更准确 演练:如何选择最佳的回归预测模型(曲线回归) Ø 带分类变量的回归预测 演练:汽车季度销量预测 演练:工龄、性别与终端销量的关系 演练:如何评估销售目标与资源配置(营业厅) 3、 时序预测 问题:随着时间变化,未来的销量变化趋势如何? Ø 时序分析的应用场景(基于时间的变化规律) Ø 移动平均MA的预测原理 Ø 指数平滑ES的预测原理 Ø 自回归移动平均ARIMA模型 Ø 如何评估预测值的准确性? 案例:销售额的时序预测及评估 演练:汽车销量预测及评估 演练:电视机销量预测分析 演练:上海证券交易所综合指数收益率序列分析 演练:服装销售数据季节性趋势预测分析 4、 季节性预测模型 Ø 季节性回归模型的参数 Ø 常用季节性预测模型(相加、相乘) 案例:美国航空旅客里程的季节性趋势分析 案例:产品销售季节性趋势预测分析 5、 新产品预测模型与S曲线 Ø 如何评估销量增长的拐点 Ø 珀尔曲线与龚铂兹曲线 案例:如何预测产品的销售增长拐点,以及销量上限 演戏:预测IPad产品的销量 6、 自定义模型(如何利用规划求解进行自定义模型) 案例:如何对餐厅客流量进行建模及模型优化 第七部分: 回归模型优化篇1、 回归模型的基本原理 Ø 三个基本概念:总变差、回归变差、剩余变差 Ø 方程的显著性检验:是否可以做回归分析? Ø 拟合优度检验:回归模型的质量评估? Ø 因素的显著性检验:自变量是否可用? Ø 理解标准误差的含义:预测的准确性? 2、 模型优化思路:寻找最佳回归拟合线 Ø 如何处理异常数据(残差与异常值排除) Ø 如何剔除非显著因素(因素显著性检验) Ø 如何进行非线性关系检验 Ø 如何进行相互作用检验 Ø 如何进行多重共线性检验 Ø 如何检验误差项 Ø 如何判断模型过拟合 案例:模型优化案例 第八部分: 分类预测模型篇问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务? 1、 分类模型概述 2、 常见分类预测模型 3、 评估分类模型的常用指标 Ø 正确率、查全率/查准率、特异性等 4、 逻辑回归模型(LR) Ø 逻辑回归模型原理及适用场景 Ø 逻辑回归种类:二项/多项逻辑回归 Ø 如何解读逻辑回归方程 案例:如何评估用户是否会购买某产品(二项逻辑回归) Ø 消费者品牌选择模型分析 案例:多品牌选择模型分析(多项逻辑回归) 5、 分类决策树(DT) 问题:如何预测客户行为?如何识别潜在客户? 风控:如何识别欠贷者的特征,以及预测欠贷概率? 客户保有:如何识别流失客户特征,以及预测客户流失概率? Ø 决策树分类简介 Ø 如何评估分类性能? 案例:美国零售商(Target)如何预测少女怀孕 演练:识别银行欠货风险,提取欠贷者的特征 Ø 构建决策树的三个关键问题 ² 如何选择最佳属性来构建节点 ² 如何分裂变量 ² 修剪决策树 Ø 选择最优属性 ² 熵、基尼索引、分类错误 ² 属性划分增益 Ø 如何分裂变量 ² 多元划分与二元划分 ² 连续变量离散化(最优划分点) Ø 修剪决策树 ² 剪枝原则 ² 预剪枝与后剪枝 Ø 构建决策树的四个算法 ² C5.0、CHAID、CART、QUEST ² 各种算法的比较 Ø 如何选择最优分类模型? 案例:商场酸奶购买用户特征提取 案例:电信运营商客户流失预警与客户挽留 案例:识别拖欠银行货款者的特征,避免不良货款 案例:识别电信诈骗者嘴脸,让通信更安全 6、 人工神经网络(ANN) Ø 神经网络概述 Ø 神经网络基本原理 Ø 神经网络的结构 Ø 神经网络的建立步骤 Ø 神经网络的关键问题 Ø BP反向传播网络(MLP) Ø 径向基网络(RBF) 案例:评估银行用户拖欠货款的概率 7、 判别分析(DA) Ø 判别分析原理 Ø 距离判别法 Ø 典型判别法 Ø 贝叶斯判别法 案例:MBA学生录取判别分析 案例:上市公司类别评估 8、 K近邻分类(KNN) Ø 基本原理 Ø 关键问题 9、贝叶斯分类(NBN) Ø 贝叶斯分类原理 Ø 计算类别属性的条件概率 Ø 估计连续属性的条件概率 Ø 贝叶斯网络种类:TAN/马尔科夫毯 Ø 预测分类概率(计算概率) 案例:评估银行用户拖欠货款的概率 10、 支持向量机(SVM) Ø SVM基本原理 Ø 线性可分问题:最大边界超平面 Ø 线性不可分问题:特征空间的转换 Ø 维空难与核函数 第九部分: 市场细分模型篇问题:我们的客户有几类?各类特征是什么?如何实现客户细分,开发符合细分市场的新产品?如何提取客户特征,从而对产品进行市场定位? 1、 市场细分的常用方法 Ø 有指导细分 Ø 无指导细分 2、 聚类分析 Ø 如何更好的了解客户群体和市场细分? Ø 如何识别客户群体特征? Ø 如何确定客户要分成多少适当的类别? Ø 聚类方法原理介绍 Ø 聚类方法作用及其适用场景 Ø 聚类分析的种类 Ø K均值聚类(快速聚类) 案例:移动三大品牌细分市场合适吗? 演练:宝洁公司如何选择新产品试销区域? 演练:如何评选优秀员工? 演练:中国各省份发达程度分析,让数据自动聚类 Ø 层次聚类(系统聚类):发现多个类别 Ø R型聚类与Q型聚类的区别 案例:中移动如何实现客户细分及营销策略 演练:中国省市经济发展情况分析(Q型聚类) 演练:裁判评分的标准衡量,避免“黑哨”(R型聚类) Ø 两步聚类 3、 主成分分析PCA分析 Ø 主成分分析原理 Ø 主成分分析基本步骤 Ø 主成分分析结果解读 演练:PCA探索汽车购买者的细分市场 4、 RFM模型客户细分框架 第十部分: 客户价值评估1、 客户价值评估与RFM模型 问题:如何评估客户的价值?如何针对不同客户采取不同的营销策略? Ø RFM模型,更深入了解你的客户价值 Ø RFM的客户细分框架理解 Ø RFM模型与市场策略 Ø RFM模型与活跃度 演练:“双11”淘宝商家如何选择客户进行促销 演练:结合响应模型,宜家IKE实现最大化营销利润 演练:重购用户特征分析 第十一部分: 假设检验篇1、 参数检验分析(样本均值检验) 问题:如何验证营销效果的有效性? Ø 假设检验概述 ² 单样本T检验 ² 两独立样本T检验 ² 两配对样本T检验 Ø 假设检验适用场景 电信行业 案例:电信运营商ARPU值评估分析(单样本) 案例:营销活动前后分析(两配对样本) 金融行业 案例:信用卡消费金额评估分析(单样本) 医疗行业 案例:吸烟与胆固醇升高的分析(两独立样本) 案例:减肥效果评估(两配对样本) 2、非参数检验分析(样本分布检验) 问题:这些属性数据的分布情况如何?如何从数据分布中看出问题? Ø 非参数检验概述 ² 单样本检验 ² 两独立样本检验 ² 两相关样本检验 ² 两配对样本检验 Ø 非参数检验适用场景 案例:产品合格率检验(单样本-二项分布) 案例:训练新方法有效性检验(两配对样本-符号/秩检验) 案例:促销方式效果检验(多相关样本-Friedman检验) 案例:客户满意度差异检验(多相关样本-Cochran Q检验) 第十二部分: 实战-数据挖掘项目实战1:客户流失预警与客户挽留之真实数据分析实践 实战2:银行信用风险分析 结束:课程总结与问题答疑。
|